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L. Wimmer

Abstract. An overview of "Elastic Scattering of Identical Spin-Zero Nuclei" by Bromley,
Kuehner and Almqvist [1].
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1 Theory
1.1 Classical Coulomb scattering [2]

Consider the scattering of two charges, Z1e and Z2e, with a reduced mass µ. In the lab frame, suppose
the incident particle has an initial velocity of v0, while the target particle remains stationary. Thus,
the energy of the system in the CM frame can be expressed as

E =
µv20
2
.

Let the scattering angle in the CM frame be denoted as θ, and the impact parameter as b. The motion
of the system in the CM frame is described by (r, φ) and is equivalent to the reduced mass being
scattered from an origin with a potential

V (r) =
g

r
,

after coming with initial velocity v0 from the infinity, where r represents the distance from the origin
and

g =
Z1Z2e

2

4πϵ0

is a constant.
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Figure 1: One-body equivalent scattering in the CM frame.

Angular momentum conservation gives
v0b = φ̇r. (1)

The change of the momentum before and after the scattering is

∆p = 2µv0 sin θ/2 =

∫ ∞

0

g

r2
sin (θ/2 + φ)dt. (2)

Plug dt from (1) into (2) and integrate from φ = 0 to π − θ to get

b =
Z1Z2e

2

8πϵ0E
cot θ/2. (3)

The above equation relates the impact parameter and the scattering angle. Now, we will derive the
classical distance of closest approach, denoted as D. At the moment of closest approach, we assume
that the velocity of the reduced mass v is perpendicular to the position vector. We can use energy
conservation to get

E =
µv20
2

=
µv2

2
+
g

D
. (4)

Additionally, angular momentum conservation yields the equation:

v0b = vD (5)
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By combining equations (3) and (4), we can derive the expression for the distance fo closest approach:

D = b
cos

(
θ
2

)
1− sin

(
θ
2

) =
Z1Z2e

2

8πϵ0E

(
1 + csc

θ

2

)
(6)

Now, we will derive the Rurtherford formula for the Coulomb scattering using the above results. To do
so, we now assume there are two beams of particles being scattered via binary collisions. We consider
the particles with impact parameter between b and b+ db and scattering angles between θ and θ+ dθ,
and we have the invertible function b(θ). We have

db =
∣∣∣db
dθ

∣∣∣dθ, (7)

the range of solid angles of scattered particles

dΩ(θ) = 2π sin θdθ (8)

and the cross-sectional area of the annulus of incoming particles associated to b+ db

dσ = 2πbdb. (9)

Equations (3), (7), (8) and (9) together give the Rutherford formula for the Coulomb scattering:

dσ

dΩ
=

(
Z1Z2e

2

16πϵ0E

)2
1

sin4 θ/2
(10)

1.2 Coulomb scattering of 2 different particles [3]

In this section, we use partial wave analysis to find a solution for the Schrödinger equation[
− ℏ2

2µ
∇2 +

Z1Z2e
2

4πϵ0r

]
ψ = Eψ (11)

of the system of 2 different particles with reduced mass µ, charges Z1e and Z2e, and energy E. The
wave number is

k =

√
2µE

ℏ
. (12)

Then, we can rewrite the Schrödinger equation using parabolic coordinates (ξ, η, ϕ), assume symmetry
with respect to the z-axis and use separation of variables, i.e. assume that

ψ(ξ, η) = G(ξ)H(η), (13)

to get the equations

d

dξ
ξ
dG(ξ)

dξ
+

(
k2

4
ξ − C

)
G(ξ) = 0 (14)

d

dη
η
dH(η)

dη
+

(
k2

4
η + C − Z1Z2e

2m

4πϵ0ℏ2

)
H(η) = 0, (15)

where C is a constant. Further analysis of boundary conditions for the incoming wave for z → −∞
gives

H(η) = eikη/2 (16)

and
G(ξ) = e−ikξ/2f(ξ) (17)

for some function f(ξ). Plug the above result into the equation for G(ξ) to get

ξ
d2f

dξ
+ (1− ikξ)

df

dξ
− γkf = 0, (18)
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where we defined

γ ≡ Z1Z2e
2m

4πϵ0ℏ2k
. (19)

But it is known that the solution for the equation

z
d2w

dz
+ (b− z)

dw

dz
− aw = 0 (20)

which is constant at z = 0 is Kummer’s (confluent hypergeometric) function

M(a, b, z) =

∞∑
s=0

Γ(a+ s)Γ(b)zs

Γ(a)Γ(b+ s)Γ(1 + s)
= 1 +

az

1!b
+
a(a+ 1)z2

2!b(b+ 1)
+ · · · , (21)

where Γ is the gamma function. Thus, we get

f(ξ) ∼M(−iγ, 1, ikξ). (22)

Using some properties of the gamma function, we get the equation for f(r) including terms up to
O(r−1) for z → ∞, which plugged back into ψ(ξ, η) gives

ψ(r, θ) ∼
(
ei[kz+γ ln k(r−z)]

[
1 +

γ2

ik(r − z)

]
+

1

r
fc(θ)e

i[kr−γ ln 2kr]

)
, (23)

where
fc(θ) =

γ

2k sin2 θ/2
e−i[γ ln (sin2 θ/2)+π−2η0] (24)

is the Coulomb scattering amplitude and

η0 = arg Γ(1 + iγ). (25)

From the scattering amplitude, we once again get the Rutherford formula for the Coulomb scattering:

dσ

dΩ
= |fc(θ)|2 =

(
Z1Z2e

2

16πϵ0E

)2
1

sin4 θ/2
(26)

Note that we used

E =
µv20
2

=
ℏ2k2

2µ
,

and that the result matches equation (10).

1.3 Mott formalism for Coulomb scattering of 2 identical particles [3]

Consider the scattering of two identical particles. Since they are identical, the detector cannot dis-
tinguish them and we have to consider the influence of both particles in the differential cross section.
The result from the previous section clearly doesn’t do that. To fix that, consider equation (23). We
can rewrite it as

ψ(r, θ) ∼ ψ1(r, θ) + fc(θ)ψ2(r). (27)

If we add the wave function of the other particle, the new solution becomes

ψ′(r, θ) ∼ ψ1(r, θ)± ψ1(r, π − θ) + fc(θ)ψ2(r)± fc(π − θ)ψ2(r), (28)

where + is for bosons (symmetric wave function) and − is for fermions (antisymmetric wave function).
Thus, we have

f ′(θ) = f(θ)± f(π − θ) (29)

and
dσ

dΩ
= |f(θ)± f(π − θ)|2. (30)
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However, if the spin of a particle is denoted by s, the multiplicity of such a state is given by 2s+1. This
is because the z-component of the spin of the system can take values from −sℏ to sℏ, incrementing
by one unit of ℏ. Therefore, for the case of two identical particles with spin s, we can have (2s + 1)2

possible combinations for the z-component of the spins of the system with the two particles, with one
singlet state (z-component of the spin of the system is zero), three triplet states (z-component of the
spin of the system is ℏ), and so on, up to (2s+ 1) states, where the (4s+ 1)-let has (4s+ 1) possible
states and the z-component of the spin of the system is 2sℏ. Note that

1 + 3 + 5 + · · ·+ (4s+ 1) =

2s∑
t=0

(2t+ 1) = (2s+ 1)2. (31)

Furthermore, if we consider the (4t+1)-let state whose scattering amplitude is f4t+1(θ), where t takes
values 0, 1/2, 1, 3/2, . . . , s, and note that

2s∑
t=0

(2t+ 1) =
∑

t=0,1,2,...
t≤s

(4t+ 1) +
∑

t=1/2,3/2,...
t≤s

(4t+ 1), (32)

we find that the singlet state is associated to a pair of bosons (t = 0), a triplet is associated to a pair
of fermions (t = 1/2), and so on. Therefore, using the result from our previous analysis of the wave
function, we know that, for fermions (t = 1/2, 3/2, . . .),

dσ

dΩ

∣∣∣
4t+1

= |f4t+1(θ)− f4t+1(π − θ)|2. (33)

On the other hand, for bosons (t = 0, 1, 2, . . .),

dσ

dΩ

∣∣∣
4t+1

= |f4t+1(θ) + f4t+1(π − θ)|2. (34)

Since
f4t+1(θ) = fc(θ)

for all values of t, the weighted differential cross section becomes

dσ

dΩ
=

1

(2s+ 1)2

(∣∣∣fc(θ) + fc(π − θ)
∣∣∣2 + 3

∣∣∣fc(θ)− fc(π − θ)
∣∣∣2 + · · ·+ (4s+ 1)

∣∣∣fc(θ) + (−1)2sfc(π + θ)
∣∣∣2) ,

where fc(θ) is the Coulomb scattering amplitude as in (24). After some simplifications, we get

dσ

dΩ
= |fc(θ)|2 + |fc(π − θ)|2 + (−1)2s

2

2s+ 1
[fc(θ)f

∗
c (π − θ) + f∗c (θ)fc(π − θ)] . (35)

Plugging (24) into the above equation, we get the Mott differential cross section:

dσ

dΩ

∣∣∣∣∣
Mott

=

(
Z1Z2e

2

16πϵ0E

)2 ∣∣∣∣csc4 θ2 + sec4
θ

2
+ (−1)2s

2

2s+ 1
cos

[
(Ze)2

ℏv0
ln

(
tan2

θ

2

)]
csc2

θ

2
sec2

θ

2

∣∣∣∣
(36)

1.4 Blair formalism for Coulomb scattering of 2 identical particles
The Blair is a modification of the Mott formalism to consider the nuclear potential between particles,
which becomes relevant at high energies and is not accounted for in the Mott formalism. It introduces
the concept that all partial waves in the incident beam, with an impact parameter corresponding to
a classical distance of closest approach smaller than the nuclear interaction radius, are completely
absorbed. In contrast, partial waves with larger impact parameters undergo pure Coulomb scattering.
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By incorporating these considerations, the Blair formalism provides a more comprehensive description
of scattering phenomena at high energies. Blair model’s differential cross section can be expressed as:

dσ

dΩ

∣∣∣∣∣
Blair

=

(
(Ze)2

16πϵ0E

)2
∣∣∣∣∣ exp(2iδ0) csc2 θ2 exp

(
−iη ln sin2 θ

2

)
± exp(2iδ0) sec

2 θ

2
exp

(
−iη ln cos2 θ

2

)

− i

η

lmax∑
l=0

(2l + 1) exp(2iδl)Pl(cos θ)∓
i

η

lmax∑
l=0

(2l + 1) exp(2iδl)Pl(− cos θ)

∣∣∣∣∣
2

(37)

Here, θ represents the center-of-mass scattering angle, δl denotes the Coulomb phase of order l, Pl

corresponds to the Legendre polynomials, and η is the Sommerfeld number given by:

η =
(Ze)2

ℏv0
.

2 Experimental results

2.1 Figures

Figure 2: Energy spectra measured at 26° for 26.5 MeV beams of C12 and O16 incident on ∼ 50 µg/cm2

and ∼ 100 µg/cm2 targets of carbon and silicon monoxide, respectively. Horizontal axis is associated
to energy and vertical axis associated to the number of particles detected.
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Figure 3: Rutherford formula for the relation between differential cross section and scattering angle
agrees with experimental data for elastic scattering of O16 ions on gold.

Figure 4: Relation between differential cross section and scattering angle for the elastic scattering of
O16 +C12 with 11.57 MeV and 13.67 MeV. In the forwards angles, the experimental data does not
align with the Rutherford formula. However, the oscillatory structure after the decrease and the small
exceeding of the Rutherford formula before the decrease are characteristics predicted by the Blair
model.
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Figure 5: Angular distributions of O16 ions on magnesium and aluminum, demonstrating agreement
with the Rutherford formula even at forward angles.
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Figure 6: Relation between differential cross section and the CM energy for the elastic scattering of
O16+C12 for ϕCM =42 and 90°. Dashes lines are the E−2 predictions from Rutherford formula. The
experimental data deviates from the Rutherford formula at higher energies due to the Coulomb barrier.
As the incident particle’s energy increases, it can overcome the Coulomb repulsion and approach the
target nucleus more closely, where the nuclear potential is effective. This leads to a deviation from the
predictions of the Rutherford formula for higher energies. The 42°data shows less oscillatory structure
because it has larger classical distance of closest approach (equation (6)) and thus is less affected by
some nuclear potential.
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Figure 7: Relation between differential cross section and energy for O16+O16 elastic scattering for
different angles. We can use Mott formalism to check the experimental data since it is an elastic
scattering of 2 identical particles. For ϕ = 90°, the energy modulation (energy dependence of the
third term of the Mott differential cross section) disappears and data aligns considerably well with
the Mott formalism, except for extreme energies. The data for all three angles conforms to the Mott
formalism for energies below 10.5 MeV. However, beyond this energy threshold, the graph exhibits a
rapid decline, primarily attributed to nuclear interactions.

Figure 8: Relation between differential cross section and scattering angle for O16+O16 elastic scattering
at 7 MeV and 8.8 MeV. The solid curve represents a sketch of the data curve, while the dashed
curve represents the Rutherford prediction. The experimental data oscillates around the Rutherford
prediction, but it does not match Mott or Blair predictions.
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Figure 9: Relation between differential cross section and scattering angle for O16+O16 elastic scattering
at 13 MeV and 15 MeV.The solid curve represents a sketch of the data curve, while the dashed and
dot-dashed curves represent the Mott prediction and the Blair prediction for lmax = 6, respectively.
At 13 MeV, Blair aligns better with data than Mott, notably at around 60° and 110°. At 15 MeV, data
is below Mott for most angles and doesn’t match either prediction.

Figure 10: Relation between differential cross section and energy for the elastic scattering of C12+C12

for different angles. As before, the Mott predictions are in accord with the experimental data before
the Coulomb barrier. However, in contrast to the oxygen results, for energies above the barrier, the
cross sections do not decrease in roughly exponential fashion and unexpectedly show marked resonance
structure.
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Figure 11: Angular distributions for C12+C12. The solid and dashed curves are the Rutherford and
Mott predictions, respectively. The data aligns perfectly with the Mott prediction.

Figure 12: Angular distributions for C12+C12. Data curve (dark solid) is predominantly shifted below
the Mott prediction (dashed), while the Rutherford prediction (light solid) is also depicted.
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Figure 13: Blair model predictions for C12+C12. A and E are the Mott and experimental curves,
respectively. In the left figure, B and C correspond to Blair’s model for lmax = 4 and 6, respectively.
In the right figure, C corresponds to lmax = 8, B corresponds to lmax = 6+ l = 10, and D corresponds
to lmax = 4+l = 8. In the case of 11.25 MeV, reasonable qualitative agreement is obtained for lmax = 4
or 6, better than the Mott model. As for the 12.50 MeV data, no qualitative agreement is found for
any given lmax up to 16.

Figure 14: Blair model predictions for the 13.0 MeV O16+O16 angular distribution. The dashed,
broken, and full curves are the Mott and Blair predictions and the experimental data, respectively.
The data aligns with the Blair model for lmax = 6.
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Figure 15: Comparison of the O+O, O+C, and C+C 90°excitation curves. The cross sections for
all three reactions appear to be approaching a common value of ∼ 10 mb/steradian at energies sig-
nificantly in excess of the barrier. This suggests that this cross section is typical of the "compound
elastic processes" including diffraction scattering and potential scattering proceeding through a normal
compound system, and thus relatively independent of the particular nuclides involved (providing that
barrier penetration effects are small).

2.2 Summary of the experimental results
Experimental data for the elastic scattering of C+C and O+O at different energies was analysed. At
energies below the Coulomb barrier, the measurements of both angle and energy exhibit excellent
agreement with the Mott scattering predictions. However, above the Coulomb barrier, the excitation
curve for O+O drops exponentially below the Mott predictions, reaching a value of 10 mb/sr at 16.5
MeV, and remains relatively constant thereafter. In contrast, the excitation curve for C+C displays
marked resonant interference structures. The Blair model provides improved predictions for the angular
distributions of C+C scattering at 11.25 MeV and O+O scattering at 13 MeV compared to the Mott
model.
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