# Mesons as Open Strings in a Holographic Dual of QCD

### Shigeki Sugimoto (IPMU)

based on: arXiv:1005.0655

with T. Imoto and T. Sakai

ハドロンスクエア@京大 7/3/2010

1 Introduction

## Meson effective theory (traditional approach)

effective action consistent with chiral sym, hidden local sym.

## "Top down approach" of holographic QCD

1. Find a D-brane configuration that realizes QCD

Meson effective theory

- 2. Use the Gauge/String duality
- 3. Some approximation

[Sakai-S.S. 2004]

Wait for the explanation

#### 5 dim U(N<sub>f</sub>) YM-CS theory in a curved space-time

• Just one line • Just 2 parameters  $M_{KK} \sim \text{``cut off'' scale}$   $\lambda \sim \text{bare coupling}$ 

## 5 dim YM-CS theory = 4 dim meson theory

$$A_{\mu}(x^{\mu}, z) = \sum_{n \ge 1} B_{\mu}^{(n)}(x^{\mu})\psi_{n}(z) \checkmark$$
$$A_{z}(x^{\mu}, z) = \sum_{n \ge 0} \varphi^{(n)}(x^{\mu})\phi_{n}(z) \checkmark$$

complete sets Chosen to diagonalize kinetic & mass terms of  $B^{(n)}_{\mu}, \varphi^{(n)}$ 

 $\varphi^{(0)} \sim \text{pion} \quad B^{(1)}_{\mu} \sim \rho \text{ meson} \quad B^{(2)}_{\mu} \sim a_1 \text{ meson}$ 

$$S_{5\dim}(A) = S_{4\dim}(\pi, \rho, a_1, \rho', a'_1, \cdots)$$

- reproduces old phenomenological models
  - Skyrme model Vector meson dominance Gell-Mann Sharp Wagner model Hidden local symmetry [Skyrme 1961] [Gell-Mann -Zachariasen 1961, Sakurai 1960]
    - [Gell-Mann -Sharp-Wagner 1962]
  - [Bando-Kugo-Uehara-Yamawaki-Yanagida 1985]
- masses and couplings roughly agree with experiments.



#### meson mass

| mass                | ρ     | $a_1$ | ho'  |
|---------------------|-------|-------|------|
| $\exp.(\text{MeV})$ | 776   | 1230  | 1465 |
| our model           | [776] | 1189  | 1607 |

[T.Sakai-S.S. 04]

#### baryon static properties

| baryon                            | our model           | exp.             |
|-----------------------------------|---------------------|------------------|
| $\langle r^2 \rangle_{I=0}^{1/2}$ | $0.742~\mathrm{fm}$ | 0.806  fm        |
| $\langle r^2 \rangle_{I=1}^{1/2}$ | $0.742~\mathrm{fm}$ | $0.939~{\rm fm}$ |
| $\langle r^2 \rangle_A^{1/2}$     | $0.537~\mathrm{fm}$ | $0.674~{\rm fm}$ |
| $g_{I=0}$                         | 1.68                | 1.76             |
| $g_{I=1}$                         | 7.03                | 9.41             |
| $g_A$                             | 0.734               | 1.27             |

### couplings in meson eff action

| coupling        | our model              | experiment                       |
|-----------------|------------------------|----------------------------------|
| $f_{\pi}$       | [92.4  MeV]            | $92.4 { m MeV}$                  |
| $L_1$           | $0.584 \times 10^{-3}$ | $(0.1 \sim 0.7) \times 10^{-3}$  |
| $L_2$           | $1.17 \times 10^{-3}$  | $(1.1 \sim 1.7) \times 10^{-3}$  |
| $L_3$           | $-3.51 \times 10^{-3}$ | $-(2.4 \sim 4.6) \times 10^{-3}$ |
| $L_9$           | $8.74 \times 10^{-3}$  | $(6.2 \sim 7.6) \times 10^{-3}$  |
| $L_{10}$        | $-8.74 \times 10^{-3}$ | $-(4.8 \sim 6.3) \times 10^{-3}$ |
| $g_{ ho\pi\pi}$ | 4.81                   | 5.99                             |
| $g_ ho$         | $0.164 \ { m GeV}^2$   | $0.121 \ { m GeV}^2$             |
| $g_{a_1 ho\pi}$ | $4.63 { m GeV}$        | $2.8 \sim 4.2 \text{ GeV}$       |

[T.Sakai-S.S. 05]

#### Today, I won't explain all these See our papers

[K.Hashimoto-T.Sakai-S.S. 08]

## What about other mesons?

• mesons in PDG meson summary table  $(N_f = 2, \text{Isovector})$ 

| parit<br>spin     | $J^{PC}$ ch     | arge conji              | ugation                 | ma                      | mass (MeV)  |                         |                         |    |
|-------------------|-----------------|-------------------------|-------------------------|-------------------------|-------------|-------------------------|-------------------------|----|
|                   | $\checkmark$    |                         |                         |                         | $\triangle$ | ∆ not                   | establish               | ed |
|                   | $0^{-+}(\pi)$   | 135                     | 1300                    | 1812                    |             |                         |                         |    |
|                   | $0^{++}(a_0)$   | 985                     | 1474                    |                         |             |                         |                         |    |
|                   | $1^{}(\rho)$    | 776                     | 1459                    | $1570^{\bigtriangleup}$ | 1720        | $1900^{\bigtriangleup}$ | $2150^{\bigtriangleup}$ |    |
| obtained from     | $1^{++}(a_1)$   | 1230                    | $1647^{\bigtriangleup}$ |                         |             |                         |                         |    |
| 5 dim gauge field | $1^{+-}(b_1)$   | 1230                    |                         |                         |             |                         |                         |    |
| (massless mode    | $1^{-+}(\pi_1)$ | 1376                    | 1653                    |                         |             |                         |                         |    |
| of open string)   | $2^{++}(a_2)$   | 1318                    | $1732^{\bigtriangleup}$ |                         |             |                         |                         |    |
|                   | $2^{-+}(\pi_2)$ | 1672                    | 1895                    | $2090^{	riangle}$       |             |                         |                         |    |
|                   | $3^{}(\rho_3)$  | 1689                    | $1990^{\bigtriangleup}$ | $2250^{\bigtriangleup}$ |             |                         |                         |    |
|                   | $4^{++}(a_4)$   | 2001                    |                         |                         |             |                         |                         |    |
|                   | $5^{}(\rho_5)$  | $2330^{	riangle}$       |                         |                         |             |                         |                         |    |
|                   | $6^{++}(a_6)$   | $2450^{\bigtriangleup}$ |                         |                         |             |                         |                         |    |

Q: Can we understand this table from string theory?

Consider massive modes (excited strings)

# <u>Plan</u>

- Introduction
  - 2 Brief review of the model
  - Meson spectrum
  - 4 Comparison with data



## 2 Brief review of the model

## D-brane and Gauge theory



Dp-brane

p+1 dimensional plane on which open strings can end

$$a \rightarrow b \rightarrow (A_{\mu})^{a}{}_{b}$$
 etc.  
 $a, b = 1 \sim N_{c} \qquad U(N_{c})$  gauge field

(p+1) dim 
$$U(N_c)$$
 gauge theory

## Gauge/String duality





[T. Sakai and S.S. 04]



% We will work in  $M_{KK}$ =1 unit.

## Holographic description

- replace D4 with the corresponding SUGRA solution
- **D8** are treated as probe brane (assuming  $N_c \gg N_f$ )

![](_page_10_Figure_3.jpeg)

 $\begin{aligned} \text{metric}: \text{ (Double Wick rotated black 4-brane solution)} \\ ds^2 &= H(u)^{-1/2} \left(-dt^2 + d\vec{x}^2 + f(u)d\tau^2\right) + H(u)^{1/2} \left(\frac{du^2}{f(u)} + u^2 d\Omega_4^2\right) \\ H(u) &= \frac{R^3}{u^3} \quad f(u) = 1 - \frac{u_{\text{KK}}^3}{u^3} \quad R^3 = \frac{\lambda l_s^2}{2} \quad u_{\text{KK}} = \frac{2}{9}\lambda l_s^2 \quad \text{(}M_{\text{KK}}\text{=1 unit)} \\ \lambda &= g_{\text{YM}}^2 N_c: \text{'t Hooft coupling} \\ l_1 \qquad l_s: \text{string length } (\to 0) \end{aligned}$ 

![](_page_11_Picture_0.jpeg)

![](_page_11_Figure_1.jpeg)

![](_page_11_Picture_2.jpeg)

string length  $\sim \lambda^{-1/2}$ string coupling  $\sim \lambda^{3/2}/N_c$ 

large  $\lambda \Leftrightarrow$  weakly curved background large  $N_c \Leftrightarrow$  weakly coupled string theory

## Hadrons in the model

![](_page_12_Figure_1.jpeg)

## QCD mesons vs artifacts

- Our brane config. is invariant under  $SO(5)^{4}S^{4}$
- quarks and gluons are invariant under SO(5) (non-invariant states are massive modes)

$$\psi_{L}$$

$$A_{\mu} \leftarrow \downarrow \downarrow \downarrow M_{\rm KK}^{-1} \rightarrow \downarrow \downarrow M_{\rm KK}^{-1} \rightarrow \downarrow \downarrow M_{\rm KK}^{-1}$$

Bound states of quarks and gluons are SO(5) invariant (non-invariant states are artifacts made by unwanted massive modes)

 $\mathbf{Z}_2$ 

**D8** 

Similarly, we can show that QCD mesons are invariant under  $\mathbb{Z}_2$  sym generated by  $I_{y9}(-1)^{F_L}$  $I_{y9}: (y, x^9) \rightarrow (-y, -x^9) \quad (\tau \rightarrow -\tau)$ 

Consider  $SO(5) \rtimes \mathbb{Z}_2$  invariant states

![](_page_14_Picture_0.jpeg)

Consider open strings attached on D8

#### **Strategy**

- Consider flat space-time, (justified when  $\lambda \gg 1$ ) and quantize the open strings attached on D8.
  - space-time:  $\mathbf{R}^{1,3} \times \mathbf{R}^2 \times S^4$ (topology)  $x^{0\sim 3}$  (z,y)  $x^{6\sim 9}$  **D8-brane:**  $(x^{\mu},z) \times S^4$

In the flat space-time limit,

 $S^4 \Rightarrow R^4$ ,  $SO(5) \Rightarrow$  rotation and translation of  $x^{6\sim 9}$ 

**2** Pick up the  $SO(5) \rtimes \mathbb{Z}_2$  invariant states.

reduced to 5 dim:  $(x^{\mu}, z)$ 

Recover the z dependence of the induced metric on D8.

General rules for light-cone quantization (NS-sector)

(light-cone direction  $x^{\pm} = x^0 \pm x^1$ )

• Fock vacuum  $|0\rangle_{NS}$ • creation op.  $\psi_{-r}^{i}$  fermion  $\alpha_{-n}^{i}$  boson  $(r = 1/2, 3/2, \dots)$   $(n = 1, 2, 3, \dots)$ • physical state  $\psi_{-r_{1}}^{i_{1}} \cdots \psi_{-r_{k}}^{i_{k}} \alpha_{-n_{1}}^{j_{1}} \cdots \alpha_{-n_{l}}^{j_{l}} |0\rangle_{NS}$ • mass  $m_{0}^{2} = \frac{N}{\alpha'}$   $N \equiv \sum_{s=1}^{k} r_{s} + \sum_{t=1}^{l} n_{t} - \frac{1}{2}$ 

% We will not consider R-sector, since there is no SO(5) invariant states in R-sector.

![](_page_16_Picture_0.jpeg)

• 
$$\psi_{-1/2}^{I}|0\rangle_{\text{NS}}$$
  $(I = 2, 3, z)$  **5** dim gauge field  $A_{\mu}$ ,  $A_{z}$   
•  $\psi_{-1/2}^{A}|0\rangle_{\text{NS}}$   $(A = y, 6, 7, 8, 9)$  **5** dim gauge field  $A_{\mu}$ ,  $A_{z}$   
not invariant  
under  $SO(5) \rtimes \mathbf{Z}_{2}$ 

#### KK decomposition along Z direction

Recovering the curved background, we obtain 5 dim  $U(N_f)$  YM-CS theory in a curved space-time.

$$S_{5\rm dim} = \kappa \int d^4x dz \,\mathrm{Tr}\left(\frac{1}{2}K(z)^{-1/3}F_{\mu\nu}^2 + K(z)F_{\mu z}^2\right) + \frac{N_c}{24\pi^2}\int_5\omega_5(A) \qquad K(z) = 1 + z^2$$

![](_page_16_Figure_5.jpeg)

## • First excited massive modes (N=1)

![](_page_17_Figure_1.jpeg)

## KK decomposition along z direction

$$h_{MN}(x^{\mu}, z) = \sum_{n=0}^{\infty} h_{MN}^{(n)}(x^{\mu})\phi_n(z)$$
 etc.

#### lowest modes (n=0):

|                 | $h_{ij}^{(0)}$ | $h_{iz}^{(0)}$ | $h_{zz}^{(0)}$ | $A_{ijk}^{(0)}$ | $A_{ijz}^{(0)}$ | $arphi^{[1,2](0)}$  | ( |
|-----------------|----------------|----------------|----------------|-----------------|-----------------|---------------------|---|
| J <sup>PC</sup> | 2++            | 1+-            | 0++            | 0-+             | 1               | 0 <sup>++</sup> x 2 |   |

## • Second excited massive mode (N=2)

lowest modes (n=0):

| J <sup>PC</sup> | 3 | 2++ | 2 | 2 <sup>-+</sup> x 2 | 1 <sup></sup> x 7 | 1 <sup>++</sup> x 3 | 1 <sup>+-</sup> x 4 | 1-+ | 0 <sup>++</sup> x 2 | 0 <sup>-+</sup> x 6 |
|-----------------|---|-----|---|---------------------|-------------------|---------------------|---------------------|-----|---------------------|---------------------|
|-----------------|---|-----|---|---------------------|-------------------|---------------------|---------------------|-----|---------------------|---------------------|

### Mass formula for N>0 states (naive shortcut)

- Flat space-time limit:  $m_0^2 = \frac{N}{\alpha'}$   $\left(\alpha'^{-1} = \frac{4}{27}\lambda M_{\rm KK}^2\right)$ (mass<sup>2</sup> for 5 dim field)  $N = 0, 1, 2, \cdots$  : excitation level
- recovering the z dependence of the metric,

![](_page_19_Figure_3.jpeg)

More careful analysis shows that the O(1) term is not affected by the RR-flux, α' correction, etc.

# 4 Comparison with data

Now we are ready to compare our results with the experimental data

### But, don't trust too much !

- $1/N_c$ ,  $1/\lambda$  corrections may be large.
- We know  $\alpha$ ' does not agree well with lattice and experiment, if we use  $m_{\rho}$  and  $f_{\pi}$  as inputs.
- quarks are massless in our model.
- Solution The model deviates from real QCD at high energy  $\sim M_{
  m KK} \sim$  1 GeV

### But, don' t be too pessimistic.

- Solution The effect of "cut off" at  $M_{KK}$  is much milder than lattice cut off.
- Remember "quench approximation" works in lattice QCD
- At least, we should not give up before trying.

![](_page_21_Picture_0.jpeg)

[T.Sakai and S.S. 04]

![](_page_21_Figure_2.jpeg)

![](_page_22_Figure_0.jpeg)

- If we use  $f_{\pi}$  to fit  $\lambda$ , we obtain  $\alpha' = 0.45$  GeV<sup>-2</sup>. This is unfortunately too small.
- If we set  $\alpha'=1.1 \text{ GeV}^{-2}$  we get very good fit.

## • First excited states (N=1, n=0)

![](_page_23_Figure_1.jpeg)

- degenerate around 1300 MeV
- $a_0$  (980) is considered to be a four quark state.

## • Second excited states (N=2, n=0)

![](_page_24_Figure_1.jpeg)

### $\Rightarrow \mathbf{\star}: \text{prediction } ?$

degenerate around 1700 MeV

 $\mathbf{S}_{*}\pi_{1}$ (1400) is claimed to be a four quark state. (could be hybrid)

![](_page_25_Picture_0.jpeg)

|                 |                                    |                         |                         |      |                         |                         | _           |
|-----------------|------------------------------------|-------------------------|-------------------------|------|-------------------------|-------------------------|-------------|
| $0^{-+}(\pi)$   | 135                                | 1300                    | 1812                    |      |                         |                         | · N/_O      |
| $0^{++}(a_0)$   | -985                               | 1474                    |                         |      |                         |                         | : /N=U      |
| $1^{}(\rho)$    | 776                                | 1459                    | $1570^{\triangle}$      | 1720 | $1900^{\bigtriangleup}$ | $2150^{\bigtriangleup}$ | : N=1       |
| $1^{++}(a_1)$   | 1230                               | $1647^{\bigtriangleup}$ |                         |      |                         |                         | : N=2       |
| $1^{+-}(b_1)$   | 1230                               |                         |                         |      |                         |                         |             |
| $1^{-+}(\pi_1)$ | 1376                               | 1653                    |                         |      |                         |                         | - :4 quarks |
| $2^{++}(a_2)$   | 1318                               | $1732^{\bigtriangleup}$ |                         |      |                         |                         | -           |
| $2^{-+}(\pi_2)$ | 1672                               | 1895                    | $2090^{\bigtriangleup}$ |      |                         |                         | _           |
| $3^{}(\rho_3)$  | 1689                               | $1990^{\bigtriangleup}$ | $2250^{\bigtriangleup}$ |      |                         |                         | _           |
| $4^{++}(a_4)$   | 2001                               |                         |                         |      |                         |                         | _           |
| $5^{}(\rho_5)$  | $2330^{\bigtriangleup}$            |                         |                         |      |                         |                         | _           |
| $6^{++}(a_6)$   | $2\overline{450}^{\bigtriangleup}$ |                         |                         |      |                         |                         | _           |

## I think this is non-trivial. What do you think?

![](_page_26_Picture_0.jpeg)

- Mesons are Strings
- Wikipedia says:

### **Problems and controversy**

Although string theory comes from physics, some say that string theory's current untestable status means that it should be classified as more of a mathematical framework for building models as opposed to a physical theory.

..... Yet, for all this activity, not a single new testable prediction has been made, not a single theoretical puzzle has been solved. ....

## Don't criticize string theory in this way anymore !